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Abstract

The singular stress problem of a peripheral edge crack around a spherical cavity in a long circular cylinder under

tension is investigated. The problem is solved by using integral transforms and is reduced to the solution of three

integral equations. The solution of these equations is obtained numerically by the method due to Erdogan, Gupta, and

Cook, and the stress intensity factors are displayed graphically.
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1. Introduction

It has been known for a long time that the presence of pores in a brittle solid seriously degrades its
strength. Strength reduction from porosity was firstly viewed as resulting stress concentration effects

magnifying the stress intensity factor on nearby flaws. Fractures emanating from spherical cavities are of

practical importance in the design of various structures.

The problem of a crack emanating from a sphere or mixed boundary value problems for regions with

spherical boundary have been investigated by various researchers. Srivastav and Narain (1965) investigated

the solution of Laplace�s equation in a sphere where the mixed type of conditions are specified on a dia-

metral plane of a sphere. Their method was adopted by Srivastava and Dwivedi (1971) for the solution of

penny shaped crack problem in a sphere. By the same method Dhaliwal et al. (1979) investigated the
problem of penny shaped crack in a sphere embedded in an infinite medium.

On the other hand, Atsumi and Shindo (1983a,b) solved the problem of internal edge crack in spherical

shell or around a spherical cavity by the application of the technique of Keer et al. (1976, 1977).
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However, the problem for the multiply connected region considered here does not appear to be inves-

tigated. In this paper, we consider the tension of a long circular cylinder having a spherical cavity with a

peripheral edge crack as depicted in Fig. 1.

This solution is of practical applications since many mechanical parts are in the form of a cylinder which

could contain pores and flaws in the process of manufacturing. The related problems of edge crack have

been recently investigated by Lee (2002a,b).

We take the axis of the shaft as the z-axis and use polar coordinates q and / for defining the position of

an element in the place of a cross section.
We also use the spherical coordinates ðr;/; hÞ which are connected with the cylindrical coordinates by

z ¼ r cos h; q ¼ r sin h:

2. Formulation of the problem

Now, consider an infinite circular cylinder of radius c having a spherical cavity of radius unity, which is

under tension by uniform axial forces as shown in Fig. 1.

For convenience, the center of the spherical cavity will be taken as the origin.

The geometry of Fig. 1 is applicable and the boundary conditions are

uzðq; 0Þ ¼ 0; c6 r < c; ð2:1Þ

Fig. 1. Geometry.
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rzzðq; 0Þ ¼ 0; 16 r < c; ð2:2Þ

rqzðq; 0Þ ¼ 0; 16 q6 c; ð2:3Þ

rqzðc; zÞ ¼ 0; ð2:4Þ

rqqðc; zÞ ¼ 0; ð2:5Þ

rrrð1; hÞ ¼ 0; ð2:6Þ

rrhð1; hÞ ¼ 0: ð2:7Þ
Moreover,

rzz ¼ p0; z ¼ �1: ð2:8Þ
A needed representation of the displacement D for the present problem can be obtained from Collins

(1962), and it is

D ¼ D1 þ D2: ð2:9Þ
The representation D1 is

D1 ¼ ð3 � 4mÞwez � zgradw � grad/; ð2:10Þ
where ez is the unit vector in the z-direction, m is Poisson�s ratio, and wðq; zÞ and /ðq; zÞ are harmonic
functions, and D2 is deduced from the Papkovich–Neuber solution of the equations of elasticity. We have as

a representation for D2

D2 ¼ ð3 � 4mÞveq � qgradv; ð2:11Þ
where eq is the unit vector in the q-direction, and vðq; zÞ cos / is a harmonic function, that is vðq; zÞ is a

solution of the equation

o2

oq2

�
þ 1

q
o

oq
þ o2

oz2
� 1

q2

�
v ¼ 0: ð2:12Þ

The stresses corresponding to (2.9) are

rqz

2l
¼ ð1 � 2mÞ ow

oq
� z

o2w
oqoz

� o2/
oqoz

þ ð1 � 2mÞ ov
oz

� q
o2v
oqoz

; ð2:13Þ

rzz

2l
¼ 2ð1 � mÞ ow

oz
� z

o2w
oz2

� o2/
oz2

þ 2m
q

o

oq
ðqvÞ � q

o2v
oz2

; ð2:14Þ

where l is the modulus of rigidity.

Suitable representations of the functions /ðq; zÞ;wðq; zÞ; and vðq; zÞ are

/ðq; zÞ ¼ ð2m � 1Þ
Z 1

0

n�1AðnÞJ0ðnqÞe�nz dn þ
Z 1

0

n�2BðnÞI0ðnqÞ cos nzdn

þ
X1
n¼0

anr�ð2nþ1ÞP2nðcos hÞ þ p0m
2ð1 þ mÞ ðq

2 � 2z2Þ; ð2:15Þ

wðq; zÞ ¼
Z 1

0

AðnÞJ0ðnqÞe�nz dn þ
X1
n¼0

bnr�ð2nþ2ÞP2nþ1ðcos hÞ þ p0

2ð1 þ mÞ z; ð2:16Þ
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vðq; zÞ ¼
Z 1

0

n�1CðnÞI1ðnqÞ cos nzdn; ð2:17Þ

where J0 is the Bessel function of the first kind and I0 and I1 are the modified Bessel functions of the first

kind and PnðxÞ is the Legendre polynomial respectively, and AðnÞ;BðnÞ, CðnÞ; an and bn are unknown

functions and unknown coefficients to be determined later. With these choice of functions, we can im-

mediately see that conditions (2.3) and (2.8) are automatically satisfied.

If we substitute functions (2.15)–(2.17) into the displacement field (2.9), and expression (2.14) for rzz, the

expressions for rzz and uz on the plane z ¼ 0 are given by the equations

uz ¼ �a
Z 1

0

AðnÞJ0ðnrÞdn; ð2:18Þ

rzz ¼ 2l

"
�
Z 1

0

nAðnÞJ0ðnrÞdn þ
X1
n¼0

r�ð2nþ3ÞP2nð0Þð2nþ 1Þfð2nþ 1Þan þ abng

þ
Z 1

0

½BðnÞI0ðnqÞ þ CðnÞfI0ðnqÞ2m þ nqI1ðnqÞg�dn þ p0

#
; ð2:19Þ

where a ¼ 2ð1 � mÞ.
To satisfy the boundary condition (2.1), the following definition is made on the crack opening dis-

placement

1

a
ouzðq; 0Þ

oq
¼ �gðqÞ; 16 q6 c;

¼ 0; cP q:
ð2:20Þ

From (2.20), AðnÞ is determined as

AðnÞ ¼
Z c

1

tgðtÞJ1ðntÞdt; ð2:21Þ

which satisfies (2.2) automatically, and if we substitute this form into (2.19), and use (2.2) it reduces that

equation to

� 2

p

Z c

1

tgðtÞRðr; tÞdt þ
X1
n¼0

r�ð2nþ3ÞP2nð0Þð2nþ 1Þfð2nþ 1Þan þ abng

þ
Z 1

0

½BðnÞI0ðnqÞ þ CðnÞfI0ðnqÞ2m þ nqI1ðnqÞg�dn ¼ �p0; 16 q6 c; ð2:22Þ

where

Rðr; tÞ ¼ 1

r2 � t2
E

r
t

� �
; t > r;

¼ r
t

1

r2 � t2
E

t
r

� �
� 1

rt
K

t
r

� �
; r > t:

ð2:23Þ

K and E in (2.23) are complete elliptic integrals of the first and the second kind, respectively.
The solution will be complete, if the conditions on the surface of the cylinder and spherical cavity are

satisfied.
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3. Conditions on the surface of the cylinder

Eq. (2.22) gives one relation connecting the unknown functions gðtÞ;BðnÞ;CðnÞ and unknown coefficients

an and bn. Two among the remaining relations are given by the conditions on the curved surface q ¼ c. The
stress component besides (2.13) and (2.14) which is needed for the present analysis is given by the following

equation

rqq

2l
¼ 2m

ow
oz

� z
o2w
oq2

� o2/
oq2

þ 2ð1 � mÞ ov
oq

þ 2m
v
q
� q

o2v
oq2

: ð3:1Þ

An expression useful for the present analysis is the following

on

ozn
1

r

� �
¼ ð�1Þnn! Pnðcos hÞ

rnþ1
: ð3:2Þ

It is easily shown that by employing formula (3.2) the value of rqz on the surface q ¼ c is given by

rqzðc; zÞ
2l

¼
Z 1

0

½BðnÞI1ðncÞ þ CðnÞfncI0ðncÞ � 2ð1 � mÞI1ðncÞg� sin nzdn � z
Z 1

0

AðnÞn2J1ðncÞe�nz dn

þ
X1
n¼0

an
1

ð2nÞ!
o2nþ1

oz2nþ1

c
r3
c

�
X1
n¼0

bn
1

ð2nþ 1Þ! z
o

oz

�
� 1 þ 2m

�
o2nþ1

oz2nþ1

c
r3
c

; ð3:3Þ

where rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ z2

p
.

Boundary conditions (2.4) and (2.5) can be written in the alternative forms

Fs½rqzðc; zÞ; z ! n� ¼ 0; ð3:4Þ

Fc½rqqðc; zÞ; z ! n� ¼ 0: ð3:5Þ
If we substitute (3.3) into (3.4), we obtain the equation

BðnÞI1ðncÞ þ CðnÞfncI0ðncÞ � 2ð1 � mÞI1ðncÞg

¼ 2

p

Z 1

0

2AðfÞ J1ðfcÞf3n

ðf2 þ n2Þ2
df

"
þ
X1
n¼0

an
ð�1Þn

ð2nÞ! n2nþ2K1ðncÞ

�
X1
n¼0

bn
ð�1Þnþ1

ð2nþ 1Þ! n
2nþ2fð2nþ 3 � 2mÞK1ðncÞ � ncK0ðncÞg

#
; ð3:6Þ

where integration by parts and the following formula are usedZ 1

0

c

ðc2 þ z2Þ3=2
¼ nK1ðncÞ: ð3:7Þ

Similarly, the value of rqq on the surface q ¼ c is given by

rqqðc; zÞ
2l

¼
Z 1

0

BðnÞ I1ðncÞ
nc


�
� I0ðncÞ

�
þ CðnÞ ð3



� 2mÞI0ðncÞ � ncI1ðncÞ �

4ð1 � mÞ
nc

I1ðncÞ
�


cos nzdn

�
Z 1

0

AðnÞn J0ðncÞ
�

� 1 � 2m
nc

J1ðncÞ þ nz J0ðncÞ



� 1

nc
J1ðncÞ

�

e�nz dn

�
X1
n¼0

an
1

ð2nÞ!
o2nþ2

oc2 oz2n

1

rc
þ
X1
n¼0

bn
1

ð2nþ 1Þ! z
o2

oc2

�
þ 2m

o

oz

�
o2nþ1

oz2nþ1

1

rc
: ð3:8Þ
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If we substitute from (3.8) into (3.5), we obtain another equation

BðnÞ I1ðncÞ
nc



� I0ðncÞ

�
þ CðnÞ ð3



� 2mÞI0ðncÞ � ncI1ðncÞ �

4ð1 � mÞ
nc

I1ðncÞ
�

¼ 2

p

Z 1

0

2AðfÞf2 J0ðfcÞn2

ðf2 þ n2Þ2

("
þ J1ðfcÞðmðf2 þ n2Þ � n2Þ

fcðf2 þ n2Þ2

)
df þ

X1
n¼0

an
ð�1Þn

ð2nÞ! n2nþ2 K0ðncÞ



þ K1ðncÞ
nc

�

þ
X1
n¼0

bn
ð�1Þn

ð2nþ 1Þ! n
2nþ2 2ðn



þ 1 � mÞK0ðncÞ þ

2nþ 1

nc

�
� nc

�
K1ðncÞ

�#
: ð3:9Þ

If we put the value of AðfÞ given by (2.21) into the first term of the right-hand side of (3.6), it is evaluated

as Z 1

0

2AðfÞ J1ðfcÞf3n

ðf2 þ n2Þ2
df ¼ 2

Z c

1

tgðtÞdtn 1

�
þ n

2

o

on

�
o

oc
iðn; cÞ

¼ �n
Z c

1

tgðtÞfntI0ðntÞK1ðncÞ � ncI1ðntÞK0ðncÞgdt; ð3:10Þ

where

iðn; cÞ ¼
Z 1

0

J0ðfcÞJ1ðftÞ
f2 þ n2

df ¼ n�1I1ðntÞK0ðncÞ; c > t: ð3:11Þ

Similarly, the first term on the right-hand side of (3.9) isZ 1

0

2AðfÞf2 J0ðfcÞn2

ðf2 þ n2Þ2

"
þ J1ðfcÞ

fc
m

f2 þ n2

(
� n2

ðf2 þ n2Þ2

)#
df

¼ �
Z c

1

tgðtÞdt 2n2 1

�

þ n

2

o

on

�
� 2

c
m

�
þ n

2

o

on

�
o

oc

�
iðn; cÞ

¼ �n
Z c

1

tgðtÞ ntI0ðntÞ K0ðncÞ

�

þ K1ðncÞ
nc

�
� I1ðntÞK0ðncÞ

� nc



þ 2ð1 � mÞ
nc

�
I1ðntÞK1ðncÞ



dt: ð3:12Þ

4. Conditions on the surface of the spherical cavity

To satisfy the boundary conditions on the spherical cavity, it is necessary to express stresses in spherical

coordinate system. They are as follows:

rrr

2l
¼ � o2/

or2
� r cos h

o2w
or2

þ a cos h
ow
or

þ ða � 2Þ sin h
ow
roh

þ a sin h
ov
or

� r sin h
o2v
or2

þ 2 � a
r

cos h
ov
oh

�
þ v

sin h

�
; ð4:1Þ

rrh

2l
¼ � 1

r
o2/
oroh

þ 1

r2

o/
oh

� cos h
o2w
oroh

� ða � 1Þ sin h
ow
or

þ a cos h
r

ow
oh

þ a sin h
ov
roh

þ ða � 1Þ cos h
ov
or

� sin h
o2v
oroh

: ð4:2Þ
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To express the stress functions in terms of spherical coordinates, the following formulae in Whittaker

and Watson (1973, p. 392) are useful

J0ðnqÞe�nz ¼ 1

2p

Z p

�p
expf�nðzþ ix cos uþ iy sin uÞgdu; ð4:3Þ

Z p

�p
ðzþ ix cos uþ iy sin uÞn du ¼ 2prnPnðcos hÞ; ð4:4Þ

where x ¼ q cos /, y ¼ q sin /. Now

/ð1Þðr; hÞ ¼ �ða � 1Þ
Z 1

0

n�1AðnÞJ0ðnqÞe�nz dn ¼ ða � 1Þ
Z c

1

tgðtÞdt
Z 1

0

n�1J1ðntÞJ0ðnqÞe�nz dn: ð4:5Þ

Using (4.3), (4.4) and the formula in Erd�eelyi et al. (1954)Z 1

0

n�1J1ðntÞe�nb dn ¼ 1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ t2

q�
� b

�
to the last integral in (4.5), it reduces toZ 1

0

n�1J1ðntÞJ0ðnqÞe�nz dn ¼ 1

2p

Z p

�p

Z 1

0

n�1e�nbJ1ðntÞdndu ¼ 1

2p

Z p

�p

1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ t2

q�
� b

�
du

¼ 1

2p

Z p

�p

X1
n¼0

ð�1Þnð� 1
2
Þn

n!
b
t

� �2n
"

� b
t

#
du

¼
X1
n¼0

ð�1Þnð� 1
2
Þn

n!
r
t

� �2n
P2nðcos hÞ � r

t
P1ðcos hÞ; ð4:6Þ

where b ¼ zþ ix cos uþ iy sin u.

Also, if we use

I0ðnqÞ cos nz ¼
X1
n¼0

ð�1Þn ðnrÞ
2n

ð2nÞ! P2nðcos hÞ ð4:7Þ

and (4.5) and (4.6), we finally obtain for /ðr; hÞ

/ðr; hÞ ¼
X1
n¼0

P2nðcos hÞ
�
�ða � 1Þ Tn

2n
r2n þ anr�2n�1 þ Un

2n
r2n



� ða � 1Þ

Z c

1

gðtÞdt rP1ðcos hÞ; ð4:8Þ

where for brevity, we used

Tn ¼ ð�1Þn
Cðn� 1

2
Þffiffiffi

p
p

CðnÞ

Z c

1

gðtÞt�2nþ1 dt ð4:9Þ

and

Un ¼
ð�1Þn

ð2n� 1Þ!

Z 1

0

BðnÞn2n dn: ð4:10Þ

Similarly if we use the formula

I0ðnqÞ sin nz ¼
X1
n¼0

ð�1Þn ðnrÞ2nþ1

ð2nþ 1Þ! P2nþ1ðcos hÞ; ð4:11Þ
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we can easily show that

wðr; hÞ ¼ �
Z c

1

gðtÞdt þ
X1
n¼0

P2nþ1ðcos hÞ
�
� Tnþ1r2nþ1 þ bnþ1r�2n�2

�
: ð4:12Þ

If we use the formula

I1ðnqÞ cos nz ¼ � sin h
X1
n¼1

ð�1Þn ðnrÞ
2n�1

ð2nÞ! P 0
2n�1ðcos hÞ; ð4:13Þ

which can be obtained by differentiating (4.7) with respect to q, and where prime denotes the differentiation

with respect to the argument, we obtain

vðr; hÞ ¼ sin h
X1
n¼1

ð�1Þnr2n�1P 0
2n�1ðcos hÞSn; ð4:14Þ

where, again we used for brevity

Sn ¼
ð�1Þn

ð2nÞ!

Z 1

0

CðnÞn2n�1 dn: ð4:15Þ

Therefore if we put expression (4.8), (4.12) and (4.14) into (4.2), and use properties of Legendre func-

tions, we obtain

rrh

2l
¼ sin h

X1
n¼1

P 0
2nðcos hÞ

"
� an

2nþ 2

r2nþ3
þ bn�1

r2nþ1

a � 4n2

4n� 1
� bnþ1

r2nþ3

ð2nþ 2Þð2nþ 1 þ 2aÞ
4nþ 3

� Tn
ð2n� 1ÞF ðnÞ
ð4n� 1Þ2n r2n�2 � Tnþ1

F ðnþ 1Þ
4nþ 3

r2n þ Unr2n�2 � Sn
ð2n� 1Þ2

2ða � nÞ
4n� 1

r2n�2

þ Snþ1

2nþ 2

4nþ 3
F ðnþ 1Þr2n � p0

3
d1;n

#
; ð4:16Þ

where d1;n is the Kronecker delta and F ðnÞ ¼ a � ð2n� 1Þ2
. Similarly, we obtain

rrr

2l
¼

X1
n¼1

P2nðcos hÞ
"
� an

ð2nþ 1Þð2nþ 2Þ
r2nþ3

þ bn�1

r2nþ1

2nGðnÞ
4n� 1

� bnþ1

r2nþ3

ð2nþ 1Þð2nþ 2Þð2nþ 1 þ 2aÞ
4nþ 3

� Tn
ð2n� 1ÞF ðnÞ

4n� 1
r2n�2 � Tnþ1

2nþ 1

4nþ 3
Gðn� 1Þr2n

� Unð2n� 1Þr2n�2 þ Sn
4nð2n� 1Þ2ða � n� 2Þ

4n� 1
r2n�2 þ Snþ1

ð2nþ 1Þð2nþ 2Þ
4nþ 3

HðnÞr2n þ 2p0

3
d1;n

#

þ p0

3
� S1

3
2ð3m þ 1Þ � 2a0

r3
� b1ð4a þ 2Þ

3r3
� T1

a � 4

3
; ð4:17Þ

where

GðnÞ ¼ 2 � a � 2nð2nþ 3Þ; HðnÞ ¼ 2ðnþ 1Þð5 � 2a þ 2nÞ � 2 þ a: ð4:18a; bÞ

Eqs. (4.16) and (4.17) are zero when r ¼ 1, thus coefficients of Legendre polynomials are zero for each n.
If we solve these coefficients simultaneously, we obtain
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bn�1 ¼
1

IðnÞ ð2n
�

� 1Þ Tnþ1ð2n



þ 1Þð4n� 1Þ � TnF ðnÞ
4nþ 1

2n

�
� Un4nð4n� 1Þ þ Sn2ð2n� 1Þ2JðnÞ

� Snþ1

4n� 1

4nþ 3
ð2nþ 1Þð2nþ 2ÞKðnÞ þ 5p0d1;n



; nP 1; ð4:19Þ

where

IðnÞ ¼ 8n2 � 4nþ að4nþ 1Þ; ð4:20Þ

JðnÞ ¼ 4n2 þ 5n� að4nþ 1Þ; ð4:21Þ

KðnÞ ¼ 2ðnþ 1Þð4nþ 5 � 2aÞ � 1 ð4:22Þ

and

�2a0 �
2

3
b1ð2a þ 1Þ � T1

a � 4

3
þ p0

3
� S1

3
2ð3m þ 1Þ ¼ 0: ð4:23Þ

If we substitute an and bn into (2.22), (3.6) and (3.9), we finally obtain following three integral equations

2

p

Z c

1

tgðtÞfRðr; tÞ þ Sðr; tÞgdt þ
Z 1

0

BðnÞK12ðr; nÞdn þ
Z 1

0

CðnÞK13ðr; nÞdn

¼ 1
h

þ p1

r3
þ p2

r5

i
p0; 16 r < c; ð4:24Þ

where

p1 ¼
5m � 4

2ð5m � 7Þ ; p2 ¼ � 9

2ð5m � 7Þ ;

with

Sðr; tÞ ¼ p
2

"
� 1 þ m

3

1

r3t2
þ
X1
n¼1

Snðr; tÞ
#
;

Snðr; tÞ is listed in Atsumi and Shindo (1983b).

2

p

Z c

1

tgðtÞKn1ðt; nÞdt þ
Z 1

0

BðgÞKn2ðn; gÞdg þ
Z 1

0

CðgÞKn3ðn; gÞdg þ BðnÞhn1ðn; cÞ

þ CðnÞhn2ðn; cÞ ¼ fnðnÞ; ðn ¼ 2; 3Þ; ð4:25Þ

where

f2ðnÞ ¼
2

p
p0n

2 ð5m � 9 � n2ÞK1ðncÞ þ 5ncK0ðncÞ
2ð7 � 5mÞ


 �
;

f3ðnÞ ¼
2

p
p0n

2 ð5m

�
� 4ÞK0ðncÞ � n2 K0ðncÞ



þ K1ðncÞ

nc

�
þ 5nc
�

þ 1 � 5m
nc

�
K1ðncÞ



1

2ð7 � 5mÞ :

We exempt the detailed expressions of Kij and hij which are available on request.

A quantity of physical interest is the stress intensity factor which is given as

K ¼ lim
r!cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr � cÞ

p
rzzðr; 0Þ: ð4:26Þ
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We let

r ¼ a
2
ðsþ 1Þ þ 1; t ¼ a

2
ðs þ 1Þ þ 1 ð4:27Þ

and in order to facilitate numerical analysis, assume gðtÞ to have the following form:

gðtÞ ¼ p0ðt � 1Þ1=2ðc � tÞ�1=2GðtÞ: ð4:28Þ
With the aid of (4.27), gðsÞ can be rewritten as

gðsÞ ¼ p0GðsÞ
1 þ s
1 � s

� �1=2

: ð4:29Þ

The stress intensity factors K can therefore be expressed in terms of GðtÞ as

K=p0 ¼
ffiffiffiffiffi
2a

p
GðcÞ ð4:30Þ

or in terms of the quantitiy actually calculated

K=p0

ffiffiffi
a

p
¼

ffiffiffi
2

p
GðcÞ: ð4:31Þ

5. Numerical analysis

In order to obtain numerical solutions of (4.24) and (4.25), substitutions are made by the application of

(4.27) and (4.29) to obtain equations of following forms:

a
p

Z 1

�1

1 þ s
1 � s

� �1=2

GðsÞ a
2
ðs

h
þ 1Þ þ 1

i
½Rðs; sÞ þ Sðs; sÞ�ds þ

Z 1

0

eBBðnÞK12ðs; nÞdn

þ
Z 1

0

~CCðnÞK13ðs; nÞdn ¼ 1 þ p1

r3
þ p2

r5
; �1 < s < 1; ð5:1Þ

a
p

Z 1

�1

1 þ s
1 � s

� �1=2

GðsÞ a
2
ðs

h
þ 1Þ þ 1

i
Kn1ðs; nÞds þ eBBðnÞhn1ðn; cÞ þ eCCðnÞhn2ðn; cÞ

þ
Z 1

0

eBBðgÞKn2ðn; gÞdg þ
Z 1

0

eCCðgÞKn3ðn; gÞdg ¼ ~ffnðnÞ; ðn ¼ 2; 3Þ 06 n < 1; ð5:2Þ

where eBBðgÞ ¼ BðgÞ=p0, etc. The numerical solution technique is based on the collocation scheme for the
solution of singular integral equations given by Erdogan et al. (1973). This amounts to applying a Gaussian

quadrature formula for approximating the integral of a function f ðsÞ with weight function

½ð1 þ sÞ=ð1 � sÞ�1=2
on the interval [)1,1]. Thus, letting n be the number of quadrature points,Z 1

�1

1 þ s
1 � s

� �1=2

f ðsÞds +
2p

2nþ 1

Xn

k¼1

ð1 þ skÞf ðskÞ; ð5:3Þ

where

sk ¼ cos
2k � 1

2nþ 1

� �
p; k ¼ 1; . . . ; n: ð5:4Þ
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For the improper integral, the Gaussian quadrature formula is used. ThusZ 1

0

BðgÞK12ðn; gÞdg ¼
Xm

k¼1

BðgkÞK12ðn; gkÞAk; ð5:5Þ

where Ak are appropriate weights.
The solution of the integral equation is obtained by choosing the collocation points:

si ¼ cos
2ip

2nþ 1

� �
; i ¼ 1; . . . ; n ð5:6Þ

and solving the matrix system for G�ðskÞ, eBBðnkÞ and eCCðnkÞ:Xn

k¼1

½Rðsj; skÞ þ Sðsj; skÞ�G�ðskÞ þ
2nþ 1

2a

Xm

k¼1

feBBðnkÞK12ðnk; rjÞ þ eCCðnkÞK13ðnk; rjÞgAk

¼ pðsjÞ
2nþ 1

2a
; j ¼ 1; . . . ; n; ð5:7Þ

where pðsjÞ is the expression of the right-hand side of (5.1), and

GðskÞ ¼
G�ðskÞ

ð1 þ skÞ½a2 ðsk þ 1Þ þ 1� ð5:8Þ

and similar expression for (5.2).

We consider the kernel Sðr; tÞ. It has a generalized Cauchy-type singularity, and should be also specified

in order to improve the convergency of calculation. This is discussed in Atsumi and Shindo (1983b).

6. Numerical results and consideration

Numerical calculations have been carried out for m ¼ 0:3. The values of normalized stress intensity factor

K=p0

ffiffiffi
a

p
versus a are shown in Figs. 2–4 for various values of c.

Fig. 2 shows the variation of K=p0

ffiffiffi
a

p
with respect to a when c ¼ 4. This figure shows that as a ap-

proaches to zero, the limiting value of K=p0

ffiffiffi
a

p
is 2.295 which is in agreement with the value obtained by

Fig. 2. Stress intensity factor for c ¼ 4.
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Atsumi and Shindo (1983b). This figure shows that as a increases, S.I.F. decreases until it achieves its
minimum whose value is about 1 around the midpoint, and then begin to increase gradually until it in-

creases very sharply. Figs. 3 and 4 deal with the cases when c ¼ 6 and 10, respectively. We can see the trend

is similar. In Fig. 4 we can notice that except both ends S.I.F. maintains relatively constant value.
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