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Abstract

The singular stress problem of a peripheral edge crack around a spherical cavity in a long circular cylinder under
tension is investigated. The problem is solved by using integral transforms and is reduced to the solution of three
integral equations. The solution of these equations is obtained numerically by the method due to Erdogan, Gupta, and
Cook, and the stress intensity factors are displayed graphically.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It has been known for a long time that the presence of pores in a brittle solid seriously degrades its
strength. Strength reduction from porosity was firstly viewed as resulting stress concentration effects
magnifying the stress intensity factor on nearby flaws. Fractures emanating from spherical cavities are of
practical importance in the design of various structures.

The problem of a crack emanating from a sphere or mixed boundary value problems for regions with
spherical boundary have been investigated by various researchers. Srivastav and Narain (1965) investigated
the solution of Laplace’s equation in a sphere where the mixed type of conditions are specified on a dia-
metral plane of a sphere. Their method was adopted by Srivastava and Dwivedi (1971) for the solution of
penny shaped crack problem in a sphere. By the same method Dhaliwal et al. (1979) investigated the
problem of penny shaped crack in a sphere embedded in an infinite medium.

On the other hand, Atsumi and Shindo (1983a,b) solved the problem of internal edge crack in spherical
shell or around a spherical cavity by the application of the technique of Keer et al. (1976, 1977).
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Fig. 1. Geometry.

However, the problem for the multiply connected region considered here does not appear to be inves-
tigated. In this paper, we consider the tension of a long circular cylinder having a spherical cavity with a
peripheral edge crack as depicted in Fig. 1.

This solution is of practical applications since many mechanical parts are in the form of a cylinder which
could contain pores and flaws in the process of manufacturing. The related problems of edge crack have
been recently investigated by Lee (2002a,b).

We take the axis of the shaft as the z-axis and use polar coordinates p and ¢ for defining the position of
an element in the place of a cross section.

We also use the spherical coordinates (r, ¢, 0) which are connected with the cylindrical coordinates by

z=rcosl, p=rsind.

2. Formulation of the problem

Now, consider an infinite circular cylinder of radius ¢ having a spherical cavity of radius unity, which is
under tension by uniform axial forces as shown in Fig. 1.

For convenience, the center of the spherical cavity will be taken as the origin.

The geometry of Fig. 1 is applicable and the boundary conditions are

u(p,0)=0, y<r<e, (2.1)
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0.(p,0)=0, 1<r<y, (2.2)
0,:(p,0) =0, 1<p<e, (2.3)
0,:(c,z) =0, (24)
pri(cvz) =0, (25)
a.(1,0) =0, (2.6)
a,9(1,0) =0. (2.7
Moreover,
0. =py, z=too. (2.8)

A needed representation of the displacement D for the present problem can be obtained from Collins
(1962), and it is

D =D, +D,. (2.9)
The representation D is
D, = (3 —4v)ye, — zgrady — grad ¢, (2.10)

where e, is the unit vector in the z-direction, v is Poisson’s ratio, and (p,z) and ¢(p,z) are harmonic
functions, and D, is deduced from the Papkovich—Neuber solution of the equations of elasticity. We have as
a representation for D,

D, = (3 —4v)ye, — pgrady, (2.11)

where e, is the unit vector in the p-direction, and y(p,z)cos ¢ is a harmonic function, that is x(p,z) is a
solution of the equation

@ 10 o 1
4~ )y=0. 2.12

(@p2+p6p+622 p2>'{ 0 @12
The stresses corresponding to (2.9) are

2 2 5 2
%:(1—2v)%— oy o9 Oy 01

2 3“0z pos T T TP o0 (2.13)
o o Yy ¢ 200 %y
5—2(1—V)g—2¥—§+;$(m)—9@a (2.14)
where p is the modulus of rigidity.
Suitable representations of the functions ¢(p,z),¥(p,z), and yx(p,z) are
b= 2= 1) [ @R Edi s [ B () cos e
0 0
c ~(2n+1) p, Pov 2 _9yp2 71
+”Z:0:a,,r zn(cosﬁ)+2(1+v)(p 2), (2.15)
— - —& . —(2n+2) Po

W2 = [ atenepre = d + > b P e0s) + (2.16)
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x(p,z) = /0% &C(on(&p) cos ézde, (2.17)

where J, is the Bessel function of the first kind and I, and 7; are the modified Bessel functions of the first
kind and P,(x) is the Legendre polynomial respectively, and A(¢),B(¢), C(¢),a, and b, are unknown
functions and unknown coefficients to be determined later. With these choice of functions, we can im-
mediately see that conditions (2.3) and (2.8) are automatically satisfied.

If we substitute functions (2.15)—(2.17) into the displacement field (2.9), and expression (2.14) for o.., the
expressions for g., and u, on the plane z = 0 are given by the equations

w=—alwﬂ®%@ﬂ%7 (2.18)
0 =2p| — ODC CA(&)Jo(Cr)de + if(z"ﬁ)f)zn(o)(z” + D{(2n + 1)a, + ab,}
+Amw@M@m+C@Hh@mm+fmm@nwf+m, (2.19)

where o = 2(1 — v).
To satisfy the boundary condition (2.1), the following definition is made on the crack opening dis-
placement
1 du.(p,0)
- = —gp
o Op (2.20)

From (2.20), A(¢) is determined as

4@ = [ o, (2.21)
1

which satisfies (2.2) automatically, and if we substitute this form into (2.19), and use (2.2) it reduces that
equation to

2

- / tg(OR(r,t)ds + ir—<zn+3>Pzn(0)(2n + D){@2n + Da, + ab,}
! n=0

+ /OX[B(é)Io(«Zp) + C(O{(Ep)2v + Ephi(Ep)HdE = —py, 1<p<y, (2.22)

1 r
R(V,t):mE(;), t>l",

_r_ b E<£)—3K(E), r>t
trr—2 \r rt \r
K and E in (2.23) are complete elliptic integrals of the first and the second kind, respectively.

The solution will be complete, if the conditions on the surface of the cylinder and spherical cavity are
satisfied.

(2.23)
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3. Conditions on the surface of the cylinder

Eq. (2.22) gives one relation connecting the unknown functions g(¢), B(¢), C(¢) and unknown coefficients
a, and b,. Two among the remaining relations are given by the conditions on the curved surface p = c¢. The
stress component besides (2.13) and (2.14) which is needed for the present analysis is given by the following
equation

Tpp oy Yy ¢ o , 1
=2 ——z—————+2(1—v) =+ 295 —p . 3.1
21 "7 op? 0p? +2(1-v) op * vp p 0p? (3.1)
An expression useful for the present analysis is the following
o (1 u  Pu(cos0)
- | =(-1)'nl"———. 2
azn (,,-) ( ) n rn+l (3 )

It is easily shown that by employing formula (3.2) the value of ¢,. on the surface p = c is given by

%c’z) - / B(E) (é¢) + C(E){Ecly(Ee) — 2(1 — v (&)} sin EzdE — = / A(E)ET (Ec)e 4 dé
K 0 0
> 1 62n+1 c 0 1 ) aZn-H c

where 7, = V2 + 22

Boundary conditions (2.4) and (2.5) can be written in the alternative forms

Flop(e,z);z — & =0, (3.4)
T loy(c,z);z — & =0. (3.5)

If we substitute (3.3) into (3.4), we obtain the equation

B(&) (Se) + C(&)fcely(Ec) — 2(1 —v)hi(&e)}
00 c 3 00 1\
_2 M 2a(p) 16 de;an(@;) EUIK (E)

n (C+&) )
- i ﬂfz’”z{(% +3 = 20K, (éc) — EcKo(ée)} (3.6)
" (2n+1)! ’
where integration by parts and the following formula are used
o c
/0 m = ¢Ki(ée). (3.7)

Similarly, the value of 6,, on the surface p = c is given by

09 [ a0 M) e} + o] 6 - 20m0 ~ eneo -

- OCA(é)f[Jo(€C) -

41 . ) M&:)H cos Ezd¢

ée

Y (o) + éz{Jo(éc) _ éh@c)}] et de

00 1 azn+2 1 > 1 62 ) 62n+1 1
I W G T s (38)

n=0



2664 D.-S. Lee | International Journal of Solids and Structures 40 (2003) 2659-2671
If we substitute from (3.8) into (3.5), we obtain another equation

B 15 - 1o b+ ()] 6 - 2o - centee) - s <¢c>}

ée
21 [ 2| (L) SE)ME@+E) — 2n+2{ Ki(¢e) }
== 24 n
™ [/o ot { Cre7 T @t ey }dC " Za e+ e
(DT n+1
+ ;bnmfz +2{2(n +1-v)Ko(éc) + <€c - éc)Kl(éc)H (3.9)
If we put the value of 4({) given by (2.21) into the first term of the right-hand side of (3.6), it is evaluated
as
Ji(Le)C¢ ( ¢ 6)
2 ——= 2 1
[0 ar=2 [as(1+5 5 ) e
_ ¢ / (O [ (EK (e) — Eel (Ko (Ee) ) dr, (3.10)
1
where
i(¢c) :/0 %dgg I (ENKo(Ec), e > t. (3.11)

Similarly, the first term on the right-hand side of (3.9) is
> Qo(le) | Ni(Le) v &
24 2 0 _ d
/0 ©x [(C2 T L { C+& (B4 :

:—/lytg(t)dt{252< +§a—a€>—§< +§665> }(f’ ¢)

= ¢ [ w0 [een{ motee) + B | - et
{gcﬁ(li:”}]( )KL ( :C}dz (3.12)

4. Conditions on the surface of the spherical cavity

To satisfy the boundary conditions on the spherical cavity, it is necessary to express stresses in spherical
coordinate system. They are as follows:

2 2
o _ TP cos98—+acos92—w+( *2)sin0%+asmﬁa—*rsmea'{
r r

2u  or? or? or or?
2—ua oy z

T (C 9@+sm0> (41)
G 1 3% 103¢ oMy oY ocosO Oy
o _ _ 2 v _1 bl o
2~ o0 trag 050 (T Dsinl =5

. Oy Oy . %y
+ocs1n0@+(oc—l)cosf)&—smf)éra(). (4.2)
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To express the stress functions in terms of spherical coordinates, the following formulae in Whittaker
and Watson (1973, p. 392) are useful

Jo(Ep)e = = % /7I exp{—¢&(z + ixcosu + iysinu) } du, (4.3)

/ (z+ixcosu + iysinu)" du = 2" P,(cos 6), (4.4)

T

where x = pcos ¢, y = psin ¢. Now
$V(0) = —(u— 1) / T M(Ep)e EdE = (a— 1) / ig(t)de / T e EhEne e (45)
0 0

1

Using (4.3), (4.4) and the formula in Erdélyi et al. (1954)

/0 ) &lnEePde = % (\/ B+ ﬁ)

to the last integral in (4.5), it reduces to

*© : 1 [ [ . 1 /1
/ 5*1J1<:t>Jo(¢p)e*€Zdaf:ﬂ || e e*mfr)dédu:% [ (VF e —p)a

¥

n 00 ﬁ 2n ﬁ
2n [’Z ( t) t du
S l
nz:; (' 2, (;) Py,(cos ) — }—;P] (cos 0), (4.6)
where § =z 4 ixcosu + iy sinu.
Also, if we use
Iy(¢p) cos &z = ZOO:(—I)" (&)™ Py, (cos 0) (4.7)
e n)! ™"
and (4.5) and (4.6), we finally obtain for ¢(r, 0)
0) — ;ph(cos 0) { (e )Z P2 4 g %ﬂ"] (a1 /1 Cg(t)dirPy(cos0),  (48)
where for brevity, we used
r(n—1) 7
7, =(-1)" 2 / N de 4.9
el 0 (49)
and
_ (_1)” /oo 2n
Up=on— s |, BOS"dE (4.10)
Similarly if we use the formula
Iy(&p)sinéz = i(—l)"ﬂﬂ +1(cos 0) (4.11)
o n+1)1 ’
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we can easily show that

W(r,0) = — / DA+ 3 P (€08 0) (= Ty 4 by 72). (4.12)
1 n=0
If we use the formula
5i(¢p)cos &z = — Sin@i(—l)" (&)™ P, (cos0) (4.13)
1cp £ (21’!)' 2n—1 ) :

which can be obtained by differentiating (4.7) with respect to p, and where prime denotes the differentiation
with respect to the argument, we obtain

1(r,0) =sin 0 "(=1)"r""'P},_(cos0)S,, (4.14)

where, again we used for brevity

_(_1)” > 2n—1 1¢
5= /0 C(E)Ede. (4.15)

Therefore if we put expression (4.8), (4.12) and (4.14) into (4.2), and use properties of Legendre func-
tions, we obtain

O . > 2n+2 b,y o—4n* b, 2n+2)2n+ 1+ 20a)
Z - Sm@zp (cos 0) [ T Ty a4y — ] 2043 4n +3

(2n —1)F(n) 5,5 Fn+1) ,, -2 (2n — 1)22(“ —n) 2y
o = " Tz 7 U R
2n+2 om Do
+Sn+14 n 3F( + l)l" 3 51,71 5 (416)
where 8, , is the Kronecker delta and F(rn) = « — (22 — 1)*. Similarly, we obtain
arr (2n +1)(2n+2) b, 2nG(n)
ZPM cos 0) 72013 2t 4 — |
busi 2n+1)Q2n+2)2n+1+420)  (2n—1)F(n) ,, , 2n+1 ,
- -T T G- 1)
r2n+3 4]’! + 3 n 4n — 1 r n+1 4]’! T 3 G(n )}"
- 4n(2n — 1 (a—n—2) ,,_ 2n+1)(2n+2 L2
—U,2n—1)r" 2 +8, ( 4’2 E i )rz 24 S, %H(m% +%5M
2a0 bl (40( + 2) o—4
Po 2t U -7 4.1
+3 3(3+>r3 37 T3 @17)
where
Gn)=2—-0—-2n(2n+3), H(n)=2n+1)(5-20+2n) -2+ (4.18a,b)

Egs. (4.16) and (4.17) are zero when » = 1, thus coefficients of Legendre polynomials are zero for each n.
If we solve these coefficients simultaneously, we obtain
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by y = ﬁ {(Zn _ 1){Tn+1 (204 1)(dn — 1) — T,F(m) 201 } — Uydn(dn — 1)+ 5,2(2n — 1) (n)
— S dn =1 (2n+1)(2n +2)K(n) + 5p051,,,} , n=l, (4.19)
dn+3
where
I(n) = 8n* —4n + a(4n + 1), (4.20)
J(n) = 4n* 4+ 5n — a(4n + 1), (4.21)
K(n)=2(n+ 1)(dn+5—20) — 1 (4.22)
and
—2a0—§b1(2a+1)—Tla;4+%—%2(3v+l):0. (4.23)

If we substitute a, and b, into (2.22), (3.6) and (3.9), we finally obtain following three integral equations
2 b o) oo
- / 1g(O){R(r, 1) + S(r, 1)} dt + / B(&)Kip(r, &)dE + / C(S)Kis(r, &) de
1 0 0
P D2
= [1+ﬁ+r—5:|po, I1<r<y, (424)

where

S.(r, 1) is listed in Atsumi and Shindo (1983b).

% /1 1g(H)Kn (¢, &) de + /OOOB(W)an(§711)dn + /000 C(K,3(&, 1) dn 4+ B(E)hy (€, ¢)

where
2 L (5v—9—E)K (&) + 5EcKy(&c)
76 =28 e b

76 =2t 5v - aiatee) - ke + BED D+ (see L2 Jieo)| 5

We exempt the detailed expressions of K;; and /;; which are available on request.
A quantity of physical interest is the stress intensity factor which is given as

K = lim /2(r — y)a..(r,0). (4.26)

r—y
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We let
a a
rzz(s—l—l)—i—l, tzz(r—i-l)—i—l (4.27)
and in order to facilitate numerical analysis, assume g(¢) to have the following form:
g(t) =po(t = 1)y = 0)2G(1). (4.28)

With the aid of (4.27), g(t) can be rewritten as

) =6 (1) " (4.29)

The stress intensity factors K can therefore be expressed in terms of G(¢) as
K/py = V2aG(y) (4.30)
or in terms of the quantitiy actually calculated

K/pov/a = V2G(y). (4.31)

5. Numerical analysis

In order to obtain numerical solutions of (4.24) and (4.25), substitutions are made by the application of
(4.27) and (4.29) to obtain equations of following forms:

/i <1 + 1’>1/2G(‘E)|:621(T+ 1)+ 1} [R(s,7) + S(s,7)]dt + Amg(f)Klz(S, &) de

1—1

SN

+/0 C‘(é)K13(s,f)dé:1+‘l:—3l+%, “l<s<l, (5.1)

/1l ( 1+ r)l/ZG(T) [g(r +1)+ I}Knl(r, &dr+ E(é)hnl(f,c) + E’(f)hnz(f,c)

1—1

Q19

+ / " BnKa(en) dn + / T CKa(En)dn = £(8), (n=2.3) 0<¢ < oo, (5.2)

where B(n) = B(17)/po, etc. The numerical solution technique is based on the collocation scheme for the
solution of singular integral equations given by Erdogan et al. (1973). This amounts to applying a Gaussian
quadrature formula for approximating the integral of a function f(r) with weight function
[(1+7)/(1 —1)]"* on the interval [~1,1]. Thus, letting » be the number of quadrature points,

/ (ififﬁf des 5o ;“ 1/ (), (5.3)

where

2k —1
T = COS <2n—H>T[, k—l,...,n. (54)
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For the improper integral, the Gaussian quadrature formula is used. Thus

/OOO B(n)Ki2(&,n)dn = iB(W)Ku(@ M)Ak

k=1

where 4; are appropriate weights.

The solution of the integral equation is obtained by choosing the collocation points:

B 2in o
§; = COS 1) i=1,...,n

and solving the matrix system for G*(t;), B(&,) and C(&,):

S IR ) + 8055 )G (5) + 2L S BEIKn(Eor) + CE)Kis(Er) s
2a —

k=1

where p(s;) is the expression of the right-hand side of (5.1), and
G ()
I+ (e +1)+1]

G(w) =

and similar expression for (5.2).

2669

We consider the kernel S(r, ¢). It has a generalized Cauchy-type singularity, and should be also specified

in order to improve the convergency of calculation. This is discussed in Atsumi and Shindo (1983b).

6. Numerical results and consideration

Numerical calculations have been carried out for v = 0.3. The values of normalized stress intensity factor

K /pov/a versus a are shown in Figs. 2-4 for various values of c.

Fig. 2 shows the variation of K/py\/a with respect to a when ¢ = 4. This figure shows that as a ap-
proaches to zero, the limiting value of K /py+/a is 2.295 which is in agreement with the value obtained by

K/pov/a
2.6

2.4
2.2+

2
1.8
1.6
1.4
1.21

11

0.8

0 0.5 1 15 2 2.5 3

Fig. 2. Stress intensity factor for ¢ = 4.
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K/ Po \/E
3.5

3

2.5

0.5 T v T T T T T T T
0 05 1 1.5 2 25 3 35 4 45 §

Fig. 3. Stress intensity factor for ¢ = 6.

K/pov/a

4.5

2.5

1.5

B

0.5 T T T T T T
0 1 2 3 4 5 6 7 8 9

Fig. 4. Stress intensity factor for ¢ = 10.

Atsumi and Shindo (1983b). This figure shows that as « increases, S.I.LF. decreases until it achieves its
minimum whose value is about 1 around the midpoint, and then begin to increase gradually until it in-
creases very sharply. Figs. 3 and 4 deal with the cases when ¢ = 6 and 10, respectively. We can see the trend
is similar. In Fig. 4 we can notice that except both ends S.I.F. maintains relatively constant value.
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